A Projection Algorithm for Solving Optimization Problems with Sparsity Constraints and Closed Convex Set Constraints

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints

We study the problem of minimizing the expected loss of a linear predictor while constraining its sparsity, i.e., bounding the number of features used by the predictor. While the resulting optimization problem is generally NP-hard, several approximation algorithms are considered. We analyze the performance of these algorithms, focusing on the characterization of the trade-off between accuracy a...

متن کامل

A Novel Approach for Solving Convex Problems with Cardinality Constraints

In this paper we consider the problem of minimizing a convex differentiable function subject to sparsity constraints. Such constraints are non-convex and the resulting optimization problem is known to be hard to solve. We propose a novel generalization of this problem and demonstrate that it is equivalent to the original sparsity-constrained problem if a certain weighting term is sufficiently l...

متن کامل

Two-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints

‎This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints‎. ‎Firstly‎, ‎we consider some lower level constraint qualifications (CQs) for this problem‎. ‎Then‎, ‎under these CQs‎, ‎we derive formula for estimating the subdifferential of its valued function‎. ‎Finally‎, ‎we present some necessary optimality condit...

متن کامل

SOLVING MULTI CONSTRAINTS STRUCTURAL TOPOLOGY OPTIMIZATION PROBLEM WITH REFORMULATION OF LEVEL SET METHOD

Due to the favorable performance of structural topology optimization to create a proper understanding in the early stages of design, this issue is taken into consideration from the standpoint of research or industrial application in recent decades. Over the last three decades, several methods have been proposed for topology optimization. One of the methods that has been effectively used in stru...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research and Fuzziology

سال: 2017

ISSN: 2163-1476,2163-1530

DOI: 10.12677/orf.2017.73009